Skip to main content
Keyron Hickman-Lewis
    mats from the Palaeoarchaean. Keyron Hickman-Lewis1,2, Kelsey R. Moore3,4, Joseph J. Razzell Hollis3, Michael L. Tuite3, Luther W. Beegle3, John P. Grotzinger4, Adrian J. Brown5, Svetlana Shkolyar6,7, Barbara Cavalazzi2,8, Caroline L.... more
    mats from the Palaeoarchaean. Keyron Hickman-Lewis1,2, Kelsey R. Moore3,4, Joseph J. Razzell Hollis3, Michael L. Tuite3, Luther W. Beegle3, John P. Grotzinger4, Adrian J. Brown5, Svetlana Shkolyar6,7, Barbara Cavalazzi2,8, Caroline L. Smith1 1Natural History Museum, UK (keyron.hickman-lewis@nhm.ac.uk), 2Univ. Bologna, Italy, 3NASA JPL, USA, 4Caltech, USA, 5Plancius Research, USA, 6Univ. Maryland, USA, 7NASA GSFC, USA, 8Univ. Johannesburg, South Africa.
    Raman spectroscopy is a molecule-specific technique allowing the investigation of the chemical structure of organic and inorganic geological materials. Since this is a non-destructive and relatively non-invasive analytical procedure,... more
    Raman spectroscopy is a molecule-specific technique allowing the investigation of the chemical structure of organic and inorganic geological materials. Since this is a non-destructive and relatively non-invasive analytical procedure, Raman spectroscopy is ideally suited to palaeontology. Raman spectroscopy is herein applied to the study of carbonaceous chert facies of the ~3.4 Ga old Buck Reef Chert of South Africa, which contain some of the oldest well-preserved evidence of early life. Laminated chert typically consists of microbands composed of microcrystalline quartz (chert) and an association of siderite and carbonaceous material (CM) in the form of mat-like laminations, simple carbonaceous grains, vein infills and diffuse CM. Using Raman spectroscopy the structural characteristics of CM in mat-rich chert have been investigated and compared with grains of CM from the same unit, but wich were deposited as massive layers that bear no evidence of microbial influence. All CM retains...
    In this work, we address the difficulty of reliably identifying traces of life on Mars. Several independent lines of evidence are required to build a compelling body of proof. In particular, we underline the importance of correctly... more
    In this work, we address the difficulty of reliably identifying traces of life on Mars. Several independent lines of evidence are required to build a compelling body of proof. In particular, we underline the importance of correctly interpreting the geological and mineralogical context of the sites to be explored for the presence of biosignatures. We use as examples to illustrate this, ALH84001 (where knowledge of the geological context was very limited) and other terrestrial deposits, for which this could be properly established. We also discuss promising locations and formations to be explored by ongoing and future rover missions, including Oxia Planum, which, dated at 4.0 Ga, is the most ancient Mars location targeted for investigation yet.
    Perseverance images of a delta on Mars The Perseverance rover landed in Jezero crater, Mars, in February 2021. Earlier orbital images showed that the crater contains an ancient river delta that was deposited by water flowing into a lake... more
    Perseverance images of a delta on Mars The Perseverance rover landed in Jezero crater, Mars, in February 2021. Earlier orbital images showed that the crater contains an ancient river delta that was deposited by water flowing into a lake billions of years ago. Mangold et al . analyzed rover images taken shortly after landing that show distant cliff faces at the edge of the delta. The exposed stratigraphy and sizes of boulders allowed them to determine the past lake level and water discharge rates. An initially steady flow transitioned into intermittent floods as the planet dried out. This history of the delta’s geology provides context for the rest of the mission and improves our understanding of Mars’ ancient climate. —KTS
    Life on the early Earth inhabited a planet whose environment was vastly different from the Earth of today. An anaerobic and hot early Earth was the birthplace of the first living cells but wide-spread small-scale physico-chemical... more
    Life on the early Earth inhabited a planet whose environment was vastly different from the Earth of today. An anaerobic and hot early Earth was the birthplace of the first living cells but wide-spread small-scale physico-chemical diversity provided opportunities for a variety of specialists: alkalophiles, acidophiles, halophiles etc. The earliest record of life has been lost due to plate tectonic recycling and the oldest preserved terranes (~3.9–3.7 Ga) are heavily altered by metamorphism, although they may contain traces of fossil life. As of ~3.5 Ga, ancient sediments are so well-preserved that a broad diversity of micro-environments and fossil traces of life can be studied, providing a surprising window into communities of microbes that had already reached the evolutionary stage of photosynthesis. From the wide variety of traces of ancient life that have been reported from the Archaean geological record in Greenland, Canada, South Africa and Western Australia, we examine a few particularly pertinent examples. Biosignatures in the rock record include microfossils, microbial mats, stromatolites, microbially induced sedimentary structures, biominerals, biologically indicative isotopic ratios and fractionations, elemental distributions, organochemical patterns and other geochemical peculiarities best explained by biological mediation. Due to dynamic geological reprocessing over the billions of years since these fossils entered the rock record, identifications of very ancient traces of life have been subject to criticism, hence the often complex arguments regarding their biogenicity. We here highlight a range of unambiguously bona fide and widely supported examples of fossil biosignatures. Fossil biosignatures have great promise as analogues of life that might be detected on other planets. In this respect, the study of the early Earth is particularly pertinent to the search for life on Mars, given the planetary- and microbial-scale similarities that prevailed on both planets during their early histories, together with the lack of subsequent geological reprocessing on Mars, which may make it an ideal repository for a near-pristine fossil record.
    Limited taxonomic classification is possible for Archaean microbial mats and this is a fundamental limitation in constraining early ecosystems. Applying Fourier transform infrared spectroscopy (FTIR), a powerful tool for identifying... more
    Limited taxonomic classification is possible for Archaean microbial mats and this is a fundamental limitation in constraining early ecosystems. Applying Fourier transform infrared spectroscopy (FTIR), a powerful tool for identifying vibrational motions attributable to specific functional groups, we characterized fossilized biopolymers in 3.5–3.3 Ga microbial mats from the Barberton greenstone belt (South Africa). Microbial mats from four Palaeoarchaean horizons exhibit significant differences in taxonomically informative aliphatic contents, despite high aromaticity. This reflects precursor biological heterogeneity since all horizons show equally exceptional preservation and underwent similar grades of metamorphism. Low methylene to end‐methyl (CH2/CH3) absorbance ratios in mats from the 3.472 Ga Middle Marker horizon signify short, highly branched n‐alkanes interpreted as isoprenoid chains forming archaeal membranes. Mats from the 3.45 Ga Hooggenoeg Chert H5c, 3.334 Ga Footbridge Chert, and 3.33 Ga Josefsdal Chert exhibit higher CH2/CH3 ratios suggesting mostly longer, unbranched fatty acids from bacterial lipid precursors. Absorbance ratios of end‐methyl to methylene (CH3/CH2) in Hooggenoeg, Josefsdal and Footbridge mats yield a range of values (0.20–0.80) suggesting mixed bacterial and archaeal architect communities based on comparison with modern examples. Higher (0.78–1.25) CH3/CH2 ratios in the Middle Marker mats identify Archaea. This exceptional preservation reflects early, rapid silicification preventing the alteration of biogeochemical signals inherited from biomass. Since silicification commenced during the lifetime of the microbial mat, FTIR signals estimate the affinities of the architect community and may be used in the reconstruction of Archaean ecosystems. Together, these results show that Bacteria and Archaea flourished together in Earth's earliest ecosystems.
    Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The... more
    Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The 1.88 Ga Gunflint biota is a Precambrian microfossil assemblage with different types and qualities of preservation across its numerous geological localities and provides important insights into the Proterozoic biosphere and taphonomic processes. Here we use synchrotron-based ptychographic X-ray computed tomography to investigate well-preserved carbonaceous microfossils from the Schreiber Beach locality as well as poorly-preserved, iron-replaced fossil filaments from the Mink Mountain locality, Gunflint Formation. 3D nanoscale imaging with contrast based on electron density allowed us to assess the morphology and carbonaceous composition of different specimens and identify the minerals associated with their preservation based on retrieved mass densities....
    Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth’s evolving physicochemical conditions; the resulting metallic biological complement is... more
    Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth’s evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation ...
    Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil... more
    Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus) and green anoxygenic phototrophic Chloroflexus spp. (i.e., Coleofasciculus–Chloroflexus mats), and Precambrian o...
    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we... more
    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial ...
    A wide spectrum of tomographic techniques now exists for studying palaeontological specimens, but the suitability of these methods for assessing Earth's oldest prokaryotic life has not been comprehensively investigated. We evaluated... more
    A wide spectrum of tomographic techniques now exists for studying palaeontological specimens, but the suitability of these methods for assessing Earth's oldest prokaryotic life has not been comprehensively investigated. We evaluated the ability of X-ray computed tomography – specifically X-ray microtomography – to reveal the morphology and petrological context of Precambrian microfossils, pseudofossils and biosedimentary structures, all of which are important in the origin and early evolution of life of Earth. The materials tested came from the Pilbara Craton of Western Australia (the 3.49 Ga Dresser Formation, the 3.46 Ga Apex chert and the 3.43 Ga Strelley Pool Formation) and the 1.88 Ga Gunflint Formation of Ontario, Canada. These units chart key developments in palaeobiology. The oldest formations contain profoundly controversial microfossil-like objects and microbially-induced sedimentary structures, whereas definitive prokaryotes are found in the youngest formations. We de...
    This paper outlines the suite of advanced multi-scalar techniques currently available in the toolkit of the modern Proterozoic palaeobiologist. These include non-intrusive and non-destructive optical, laser and X-ray techniques, plus more... more
    This paper outlines the suite of advanced multi-scalar techniques currently available in the toolkit of the modern Proterozoic palaeobiologist. These include non-intrusive and non-destructive optical, laser and X-ray techniques, plus more destructive ion beam and electron beam methods. Together, these provide morphological, mineralogical and biochemical data at flexible spatial scales from that of an individual atom to the largest Proterozoic microfossils. An overview is given of each technique and a case study from the exceptionally well-preserved Torridonian biota of NW Scotland is presented. This microfossil assemblage was first recognized over a century ago, but its great diversity and evolutionary importance has only recently come to light, due in no small part to the research efforts of Martin Brasier.
    Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil... more
    Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus) and green anoxygenic phototrophic Chloroflexus spp. (i.e., Coleofasciculus-Chloroflexus mats), and Precambrian organo-sedimentary structures, demonstrating parallels between them. In elevated ambient concentrations of Cu (toxic to Coleofasciculus), Coleofasciculus-Chloroflexus mats respond by forming centimetre-scale pinnacle-like structures (supra-lamina complexities) associated with large quantities of EPS at their surfaces. µPIXE mapping shows that Cu and other metals become concentrated within surficial sheath-EPS-Chloroflexus-rich layers, producing density-differential micromorphologies with distinct fabric orientations that are detectable using X-ray computed micro-tomography (X-ray µCT). Similar micromorphologies are also detectable in stromatolites from the 3.481 Ga Dresser Formation (Pilbara, Western Australia). The cause and response link between the presence of toxic elements (geochemical stress) and the development of multi-layered topographical complexities in organo-sedimentary structures may thus be considered an indicator of biogenicity, being an indisputably biological and predictable morphogenetic response reflecting, in this case, the differential responses of Coleofasciculus and Chloroflexus to Cu. Growth models for microbialite morphogenesis rely upon linking morphology to intrinsic (biological) and extrinsic (environmental) influences. Since the pinnacles of Coleofasciculus-Chloroflexus mats have an unambiguously biological origin linked to extrinsic geochemistry, we suggest that similar micromorphologies observed in ancient organo-sedimentary structures are indicative of biogenesis. An identical Coleofasciculus-Chloroflexus community subjected to salinity stress also produced supra-lamina complexities (tufts) but did not produce identifiable micromorphologies in three dimensions since salinity seems not to negatively impact either organism, and therefore cannot be used as a morphogenetic tool for the interpretation of density-homogeneous micro-tufted
    Limited taxonomic classification is possible for Archaean microbial mats and this is a fundamental limitation in constraining early ecosystems. Applying Fourier transform infrared spectroscopy (FTIR), a powerful tool for identifying... more
    Limited taxonomic classification is possible for Archaean microbial mats and this is a fundamental limitation in constraining early ecosystems. Applying Fourier transform infrared spectroscopy (FTIR), a powerful tool for identifying vibrational motions attributable to specific functional groups, we characterized fossilized biopolymers in 3.5-3.3 Ga microbial mats from the Barberton greenstone belt (South Africa). Microbial mats from four Palaeoarchaean horizons exhibit significant differences in taxonomically informative aliphatic contents, despite high aromaticity. This reflects precursor biological heterogeneity since all horizons show equally exceptional preservation and underwent similar grades of metamorphism. Low methylene to end-methyl (CH 2 /CH 3) absorbance ratios in mats from the 3.472 Ga Middle Marker horizon signify short, highly branched n-alkanes interpreted as isoprenoid chains forming archaeal membranes. Mats from the 3.45 Ga Hooggenoeg Chert H5c, 3.334 Ga Footbridge Chert, and 3.33 Ga Josefsdal Chert exhibit higher CH 2 /CH 3 ratios suggesting mostly longer, unbranched fatty acids from bacterial lipid precursors. Absorbance ratios of end-methyl to methylene (CH 3 /CH 2) in Hooggenoeg, Josefsdal and Footbridge mats yield a range of values (0.20-0.80) suggesting mixed bacterial and archaeal architect communities based on comparison with modern examples. Higher (0.78-1.25) CH 3 / CH 2 ratios in the Middle Marker mats identify Archaea. This exceptional preservation reflects early, rapid silicification preventing the alteration of biogeochemical signals inherited from biomass. Since silicification commenced during the lifetime of the microbial mat, FTIR signals estimate the affinities of the architect community and may be used in the reconstruction of Archaean ecosystems. Together, these results show that Bacteria and Archaea flourished together in Earth's earliest ecosystems.
    Palaeoarchaean cherts preserve the most ancient direct traces of life, but this palaeobiological testament is rarely assimilated into ecosystem or biome models. Trace and rare earth element plus yttrium (REE + Y) compositions reliably... more
    Palaeoarchaean cherts preserve the most ancient direct traces of life, but this palaeobiological testament is rarely assimilated into ecosystem or biome models. Trace and rare earth element plus yttrium (REE + Y) compositions reliably decode the palaeodepositional settings of these cherts, and thus constrain the environments within which early microbial life flourished. Herein, we present systematic comparisons between bulk inductively coupled plasma mass spectrometry (ICP-MS) of four fossiliferous cherts from the Barberton greenstone belt, South Africa (the 3.472 Ga Middle Marker horizon, 3.45 Ga Hooggenoeg H5c chert, 3.334 Ga Footbridge Chert, and~3.33 Ga Josefsdal Chert), and in situ laser ablation (LA) ICP-MS transects through microbial laminations therein. Normalised bulk ICP-MS analyses generally exhibit fractionated REE + Y patterns typical of anoxic hydrogenous sedimentation, supporting previous assertions that the Palaeoarchaean habitable realm was a hydrothermally influenced ocean. Suppressed La, Eu and Y anomalies, together with supra-chondritic Y/Ho ratios, however, indicate restriction from the open ocean and influences from non-marine waters. In situ LA ICP-MS transects through fossiliferous layers yield flat, light REE-enriched REE + Y patterns and chondritic Y/Ho ratios indicating major contributions from terrigenous, riverine fluids, i.e. continental weathering. Resurgences of marine chemistry (increased Y/Ho ratios, La and Y anomalies) occur within microbial laminations themselves. Combined, these results evidence the presence of emergent, volcanic landmasses in the Palaeoarchaean, and highlight the importance of epicontinental basins atop these landmasses as loci for microbial biomes up to 250 Ma before large-scale terrestrial ecosystems. Increased riverine weathering of mafic-felsic continental material , together with periodic seawater recharge into these basins, generated disequilibrium redox conditions under which microbial life flourished. Emergent landmasses may thus have catalysed the flourishing of widespread productive photosynthetic biomes. Charting the relative dominance of biomes through time could illuminate microbial evolutionary trajectories through the lens of environmental reconstruction. Furthermore, we advocate the use of correlated bulk and in situ geochemical approaches in reconstructing ancient environments, since signals relating to small-scale palaeoenvironmental fluctuation can evidently be masked by bulk rock chemistry.
    Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth's evolving physicochemical conditions; the resulting metallic biological complement is... more
    Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth's evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation Event, are either absent or present at concentrations below the limit of detection of µPIXE, suggesting minor biological utilisation in this environmental setting. Scanning and transmission electron microscopy demonstrates that metal enrichments do not arise from accumulation in nanomineral phases and thus unambiguously reflect the primary composition of the carbonaceous material. This carbonaceous material also has δ 13 c between −41.3‰ and 0.03‰, dominantly −21.0‰ to −11.5‰, consistent with biological fractionation and mostly within a restricted range inconsistent with abiotic processes. Considering spatially quantified trace metal enrichments and negative δ 13 C fractionations together, we propose that, although lacking cellular preservation, this organic material has biological origins and, moreover, that its precursor metabolism may be estimated from the fossilised "palaeo-metallome". Enriched Fe, V, Ni and Co, together with petrographic context, suggests that this kerogen reflects the remnants of a lithotrophic or organotrophic consortium cycling methane or nitrogen. Palaeo-metallome compositions could be used to deduce the metabolic networks of Earth's earliest ecosystems and, potentially, as a biosignature for evaluating the origin of preserved organic materials found on Mars. "The system of cell chemistry…cannot be divorced from the environment any more than it can be separated from a code. All the basic chemicals and energy come from the environment and this remains true to this day"
    The Middle Marker – horizon H1 of the Hooggenoeg Formation – is the oldest sedimentary horizon in the Barberton greenstone belt and one of the oldest sedimentary horizons on Earth. Herein, we describe a range of carbonaceous... more
    The Middle Marker – horizon H1 of the Hooggenoeg Formation – is the oldest sedimentary horizon in the Barberton greenstone belt and one of the oldest sedimentary horizons on Earth. Herein, we describe a range of carbonaceous microstructures in this unit which bear resemblance to phototrophic microbial biofilms, biose-dimentary structures, and interpreted microfossils in contemporaneous greenstone belts from the Early Archaean. Post-depositional iron-rich fluid cycling through these sediments has resulted in the precipitation of pseudo-laminated structures, which also bear resemblance, at the micron-scale, to certain microbial mat-like structures, although are certainly abiogenic. Poor preservation of multiple putative microbial horizons due to coarse volcaniclastic sedimentation and synsedimentary fragmentation by hydrothermal fluid also makes a conclusive assessment of biogenicity challenging. Nonetheless, several laminated morphologies within volca-niclastic sandstones and siltstones and coarse-grained volcaniclastic sandstones are recognisable as syngenetic photosynthetic microbial biofilms and microbially induced sedimentary structures; therefore, the Middle Marker preserves the oldest evidence for life in the Barberton greenstone belt. Among these biosignatures are fine, crinkly, micro-tufted, laminated microbial mats, pseudo-tufted laminations and wisp-like carbonaceous fragments interpreted as either partially formed biofilms or their erosional products. In the same sediments, lenti-cular objects, which have previously been interpreted as bona fide microfossils, are rare but recurrent finds whose biogenicity we question. The Middle Marker preserves an ancient record of epibenthic microbial communities flourishing, struggling and perishing in parallel with a waning volcanic cycle, an environment upon which they depended and through which they endured. Direct comparisons can be made between environment-level characters of the Middle Marker and other Early Archaean cherts, suggesting that shallow-water, plat-formal, volcanogenic-hydrothermal biocoenoses were major microbial habitats throughout the Archaean.
    Research Interests:
    A wide spectrum of tomographic techniques now exists for studying palaeontological specimens, but the suitability of these methods for assessing Earth’s oldest prokaryotic life has not been comprehensively investigated. Here we seek to... more
    A wide spectrum of tomographic techniques now exists for studying palaeontological specimens, but the suitability of these methods for assessing Earth’s oldest prokaryotic life has not been comprehensively investigated. Here we seek to evaluate the ability of X-ray computed tomography – specifically X-ray microtomography (μCT) – to reveal the morphology and petrological context of Precambrian microfossils, pseudofossils and biosedimentary structures, all of which have significance to the origin and early evolution of life of Earth. Material tested herein comes from the Pilbara Craton of Western Australia (the 3.49 Ga Dresser Formation, 3.46 Ga Apex Chert and 3.43 Ga Strelley Pool Formation) and the 1.88 Ga Gunflint Formation of Ontario, Canada. These units chart key developments in palaeobiology: the oldest, contain profoundly controversial microfossil-like objects and microbially induced sedimentary structures, whilst definitive prokaryotes are found in the youngest. We demonstrate that the imaging of individual microfossils and pseudofossils currently lies at the limits of lab-based μCT capabilities and requires beneficial taphonomy. However, microtomography does provide a good overview of their petrological context at flexible spatial scales, although the quality of data obtained from mesoscopic MISS and stromatolites depends largely on their style of preservation.
    Research Interests:
    Hydrothermal black chert veins intruding the 3.46 Ga Apex Basalt contain some of Earth's oldest microfossil-like objects, whose biogenicity has been questioned. Whilst these black chert veins have been studied in great detail, relatively... more
    Hydrothermal black chert veins intruding the 3.46 Ga Apex Basalt contain some of Earth's oldest microfossil-like objects, whose biogenicity has been questioned. Whilst these black chert veins have been studied in great detail, relatively little is known about the stratiform, seafloor, sedimentary cherts that are conformably interbedded with volcanic rocks of the Apex Basalt. Herein, we document and assess the biogenicity of carbonaceous microstructures present in the low-ermost of the stratiform chert units (informally known as the 'Apex chert'), at the Chinaman Creek locality in the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Carbonaceous material mostly occurs within clotted grey-black cherts and microgranular 'grainstone-like' cherts within the stratiform unit, the latter being the major focus of this study. In the clotted cherts, carbon occurs as lobate, fluffy grains, rare compressed flakes, and as a grain boundary phase around spherulitic silica. There is no morphological evidence to support the biogenicity of these microstructures. In contrast, the microgranular chert contains fluffy and flaky carbonaceous grains, plus laminated grains comprising multiple non-isopachous wrinkled carbonaceous laminae, with noted thickening towards some ridge crests, as determined by confocal laser scanning microscopy. Roll-up structures provide evidence of an initial plasticity, interpreted to have formed via the tearing-up and current-induced plastic deformation of microbial mat fragments. Geochemical mapping, using laser Raman micro-spectroscopy and NanoSIMS, respectively demonstrates the antiquity of the carbon, and reveals a close correlation between carbon, nitrogen and sometimes sulphur, concentrated within dark brown to black laminae. Adjacent to microgranular zones are zones of more persistent carbonaceous, undulose, filament-like laminae that entrain relict sediment grains. These microstructures are directly comparable to a sub-type of microbially induced sedimentary structure (MISS), widely reported from younger siliciclastic sediments colonised by microbial biofilms. The morphology and chemical composition of both the non-isopachous laminated grains and the filament-like laminae are consistent with a biological interpretation, suggesting microscopic MISS were present in the microgranular stratiform 'Apex chert'. However, the fact that neither macroscopic MISS nor bona fide microfossils have yet been reported from this unit, coupled with the proximity of these structures to active hydrothermal vents, potentially discharging hot carbon-rich fluids, urges caution in such an interpretation. The Chinaman Creek 'Apex chert' investigated here is one of at least five sedimentary, laminated cherts within the Apex Basalt. These horizons are promising targets in the search for biological activity within a dominantly volcanic Archaean environment.
    Research Interests: